Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Abstract Collaborative robots, or cobots, have been developed as a solution to the growing need for robots that can work alongside humans safely and effectively. One emerging technology in robotics is the use of Discrete Variable Stiffness Actuators (DVSAs), which enable robots to adjust their stiffness in a fast-discrete manner. This enables cobots to work in both low and high stiffness modes, allowing for safe collaboration with human workers or operation behind safety barriers. However, achieving good performance with different stiffness modes of DVSAs is a challenging problem. This paper proposes a method to provide force control of a DVSA by exploiting the dynamic model and the discrete stiffness levels. The two-mass dynamic model, a widely accepted model of flexible systems, is used to model and analyze the DVSA. The proposed method involves using Gain-scheduling and Deterministic Robust Control (DRC) controllers as modelbased control algorithms for the DVSA to achieve high-precision force control. We also conducted a comparison with the commonly used proportional integral derivative (PID) control algorithms. The paper presents a detailed analysis of the dynamic behavior of the DVSA and demonstrates the effectiveness of the proposed control algorithms through simulation with different scenario comparisons, even in the presence of external disturbances.more » « less
- 
            Abstract Many materials have been explored for the purpose of creating structures with high radiative cooling potential, such as nanocellulose-based structures and nanoparticle-based coatings, which have been reported with environmentally friendly attributes and high solar reflectance in current literature. They each have their own advantages and disadvantages in practice. It is worth noting that nanocellulose-based structures have an absorption peak in the UV wavelengths, which results in a lower total solar reflectance and, consequently, reduce radiative cooling capabilities. However, the interwoven-fiber structure of cellulose gives high mechanical strength, which promotes its application in different scenarios. The application of nanoplatelet-based coatings is limited due to the need for high volume of nanoparticles to reach their signature high solar reflectance. This requirement weakens the polymer matrix and results in more brittle structures. This work proposes a dual-layer system, comprising of a cellulose-based substrate as the bottom layer and a thin nanoparticle-based radiative cooling paint as the top layer, where both radiative cooling potential and mechanical strength can be maximized. Experimental and theoretical studies are conducted to investigate the relationship between thickness and reflectance in the top coating layer with a consistent thickness of the bottom layer. The saturation point is identified in this relationship and used to determine the optimal thickness for the top-layer to maximize material use efficiency. With the use of cotton paper painted with a 125 μm BaSO4-based layer, the cooling performance is enhanced to be 149.6 W/m2achieved by the improved total solar reflectance from 80 % to 93 %.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
